STUDIES ON THE THERMODYNAMIC PROPERTIES OF BINARY MIXTURES CONTAINING AN ALCOHOL. XIII. EXCESS MOLAR ENTHALPIES OF SOME MIXTURES OF *n*-ALCOHOLS WITH ANILINE OR CHLOROBENZENE AT 298.15 K *

Y.X. WANG, J.P. CHAO and M. DAI

Research Laboratory of Solution Chemistry, Henan Institute of Chemistry, Zhengzhou, Henan (P.R. China)

(Received 25 August 1989)

ABSTRACT

The excess molar enthalpies, H^E , were obtained as a function of the mole fraction, x, at 298.15 K and atmospheric pressure for each of the mixtures of methanol, ethanol, *n*-propanol or *n*-pentanol with aniline or chlorobenzene, and also for *n*-hexanol+chlorobenzene. The values of H^E are positive in all the mixtures except those of methanol or ethanol + aniline, in which the excess molar enthalpies show sigmoid-shaped curves. The results were discussed in terms of the effects due to the dissociation, association and chain length of the alcohols and different substituents in the benzene ring.

INTRODUCTION

In recent years there has been a keen interest in the concept of the functional group effect in the formation of multiple hydrogen-bonded complexes. An early suggestion for this effect was to explain the structure of liquid water. It was consequently believed that the lower alcohols should also possess a degree of the effect in the formation of hydrogen-bonded complexes. Further, it was realized that thermodynamic data could clearly show the functional group effect in solutions.

As a continuation of our studies on the thermodynamic properties of binary mixtures containing an alcohol [1-5], we report here the excess molar enthalpies of four *n*-alcohols with aniline and five *n*-alcohols with chlorobenzene at 298.15 K. The interactions between like and unlike molecules are discussed, and possible geometries of the complexes in the mixtures described.

^{*} Project supported by The National Natural Science Foundation of China.

Presented at the International Conference on Chemical Thermodynamics and Calorimetry Beijing, P.R. China, 25-28 August 1989.

EXPERIMENTAL

Apparatus

A Picker flow microcalorimeter was used to measure the excess molar enthalpies. Details of the equipment and of the operating procedure have been described in our earlier work [6]. The technique and calibration were first checked by measuring the known value of H^E for the mixture benzene + cyclohexane at 298.15 K. Our results were within 1% of the values reported by Grolier [7] at x = 0.5.

Materials

The chemicals used were the same as those used in our previous studies [4]. All samples were treated prior to use by the methods of Riddick and Bunger [8]. The refractive indexes n_d^{25} and densities of pure liquids were in agreement with the literature values [8].

RESULTS

The excess molar enthalpies at 298.15 K and atmospheric pressure for all mixtures are listed in Tables 1 and 2. The results were fitted by the least squares method to the equation

$$H^{\rm E} = x(1-x)\sum_{i=0}^{n} A_i (1-2x)^i$$
(1)

for alcohols with aniline and to the equation

$$H^{\rm E} = x(1-x) \sum_{i=0}^{n} A_i x^{i/2}$$
(2)

for alcohols with chlorobenzene so as to represent skewed results. The coefficients A_i for eqns. (1) and (2) are listed in Table 3, and standard deviations are also given in the last column. Plots of excess molar enthalpies against mole fractions for these two series are shown in Figs. 1 and 2, and the variations of H^E with size of the alcohol molecule at x = 0.5 are shown in Fig. 3. The experimental results of *n*-butanol with chlorobenzene or aniline [4] are included in the figures for comparison.

As far as we know, only the excess molar enthalpies for methanol + aniline and ethanol, *n*-propanol + chlorobenzene have been measured previously [9–11]. The H^{E} values for methanol + aniline from the present study are in fair agreement with those reported by Deshpande and Pandya [9], but the

TABLE 1

Excess enthalpies, H^{E} , for bina	ry mixtures of <i>n</i> -alcohols + aniline at 298.15 K	
x is the mole fraction of the n-	alcohol.	

<i>x</i>	H ^E	x	H ^E	x	H ^E
	$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$
xCH₃OH	$+(1-x)C_{6}H_{5}NH_{5}$	ł ₂			
0.0471	10.1	0.4345	-135.4	0.8061	- 244.4
0.0846	14.2	0.5008	-174.4	0.8417	- 232.9
0.1205	14.5	0.5609	-203.2	0.8748	-214.2
0.1549	9.61	0.6157	-225.2	0.9057	-187.3
0.1879	1.21	0.6658	-241.2	0.9345	-148.2
0.2500	-23.4	0.7119	- 245.2	0.9616	- 99.3
0.3077	- 57.3	0.7544	-251.3	0.9788	-60.8
0.3611	- 92.4	0.7809	-249.5		
xC ₂ H ₅ OH	$H + (1 - x)C_6H_5N$	H ₂			
0.0425	91.6	0.4244	387.9	0.7697	153.9
0.0938	180.6	0.4809	360.2	0.8108	118.2
0.1432	248.9	0.5347	328.2	0.8503	79.3
0.1908	303.5	0.5860	294.2	0.8882	43.1
0.2590	362.3	0.6351	260.3	0.9246	14.1
0.3237	389.3	0.6819	221.6	0.9597	-4.4
0.3851	397.8	0.7267	189.2	0.9823	-8.0
xC ₃ H ₇ OH	$H + (1 - x)C_6H_5N$	H ₂			
0.0374	145.5	0.4205	778.3	0.7217	565.2
0.0783	278.2	0.4734	779.3	0.7684	487.8
0.1385	442.4	0.5251	767.8	0.8142	406.5
0.1974	569.9	0.5758	740.4	0.8592	316.9
0.2550	657.6	0.6254	693.2	0.9032	222.9
0.3114	722.3	0.6740	636.7	0.9464	125.5
0.3665	761.3				
$xC_{5}H_{11}O$	$\mathrm{H} + (1-x)\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{N}$	H ₂			
0.0325	206.1	0.3468	993.4	0.7175	765.3
0.0624	359.3	0.3970	1020.2	0.7743	642.3
0.1079	550.3	0.4481	1022.7	0.8322	495.2
0.1541	700.2	0.5001	1009.0	0.8911	325.2
0.2011	804.5	0.5530	981.3	0.9310	209.1
0.2488	886.7	0.6069	938.4	0.9714	85.4
0.2974	948.4	0.6617	855.6		

signs of H^{E} in the two papers are completely opposite. As to ethanol, *n*-propanol + chlorobenzene, our experimental values correspond with those of Nicolaides and Eckert [10] and Nagata and Tamura [11].

TABLE 2

x	H^{E}	x	H^{E}	x	H ^E
	$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$
xCH₃OH	$+(1-x)C_{6}H_{5}Cl$				
0 0324	1841	0.4009	538 /	0 7467	242.0
0.0524	228.2	0.4002	513.7	0.7407	243.5
0.0711	440 1	0.4804	183.8	0.7651	208.5
0.1077	505 1	0.5292	403.0	0.8104	100.0
0.1769	540.8	0.5663	433.5	0.8763	102.0
0.1702	560.2	0.5005	377 5	0.0703	78.0
0.2072	573.4	0.646	337.6	0.9032	10.7 56 0
0.2401	573.8	0.0040	332.0 287 7	0.9283	30.2
0.3515	565.2	0.7074	287.7	0.9519	57.1
xC₂H₅OI	$H+(1-x)C_6H_5C_6$	1			
0.0511	419.9	0.3209	729.2	0.6775	374.5
0.0786	531.3	0.3633	710.9	0.7205	309.7
0.1054	602.7	0.4039	686.6	0.7613	249.3
0.1316	649.9	0.4429	657.3	0.8001	194.9
0.1571	689.6	0.4804	627.1	0.8371	142.2
0.1821	710.5	0.5339	569.3	0.8722	96.5
0.2305	733.3	0.5805	508.5	0.9058	59.3
0.2767	738.1	0.6323	439.9	0.9381	30.1
xC ₃ H ₇ OH	$H + (1 - x)C_6H_5C$	1			
0.0408	474.1	0.3109	884.1	0.6735	527.6
0.0631	583.1	0.3491	883.3	0.7192	450.1
0.0852	655.1	0.3864	867.8	0.7636	371.8
0.1068	711.5	0.4229	849.3	0.8067	301.2
0.1283	751.4	0.4762	806.7	0.8486	231.1
0.1495	782.2	0.5278	748.2	0.8892	163.9
0.1913	825.9	0.5779	687.1	0.9289	104.9
0.2321	855.4	0.6264	604.5	0.9547	65.1
$xC_5H_{11}O$	$\mathrm{H} + (1-x)\mathrm{C}_6\mathrm{H}_5\mathrm{C}$	21			
0.0296	370.6	0.2640	961.2	0.5758	807.9
0.0461	490.2	0.2980	972.7	0.6290	726.6
0.0627	580.7	0.3322	981.1	0.6825	633.9
0.0959	713.3	0.3666	980.4	0.7364	537.9
0.1292	800.2	0.4011	969.5	0.7906	432.3
0.1627	863.7	0.4357	950.9	0.8452	320.9
0.1963	906.2	0.4705	928.3	0.9001	204.7
0.2301	939.5	0.5230	873.4	0.9555	91.8

Excess enthalpies, H^{E} , for binary mixtures of *n*-alcohols + chlorobenzene at 298.15 K; x is the mole fraction of the *n*-alcohol.

<i>x</i>	H^{E}	x	H^{E}	x	H^{E}
	$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$		$(J mol^{-1})$
$xC_6H_{13}O$	$H + (1 - x)C_6H_5C_6$	21			
0.0262	368.5	0.2407	928.3	0.5492	832.8
0.0408	479.6	0.2701	946.7	0.6046	753.1
0.0556	563.5	0.3059	967.6	0.6619	656.3
0.0854	678.2	0.3391	972.1	0.7192	550.9
0.1156	755.8	0.3729	967.2	0.7822	432.3
0.1482	817.7	0.4071	959.8	0.8395	322.1
0.1773	862.2	0.4419	940.5	0.9017	199.1
0.2088	900.1	0.4949	896.8	0.9440	113.9

TABLE 2 (continued)

DISCUSSION

Although aniline and chlorobenzene resemble each other in structure, the experimental results obtained for the two series are very different in magnitude and shape. For alcohols + chlorobenzene, the H^{E} values are all positive over the entire composition range and the mixing curves are skewed near x = 0.3. These phenomena are similar to those for alcohols + benzene [1], but the $H^{\rm E}$ values for alcohols + chlorobenzene are about 170 J mol⁻¹ lower than those for alcohols + benzene. The behaviour of H^{E} may be explained by the effects due to the molecular dissociation of both components and the formation of hydrogen bonds between unlike molecules. The chlorine atom in chlorobenzene decreases the electron density on the benzene ring because of its strong electron affinity and therefore decreases the interaction between alcohols and the benzene ring. On the other hand, the presence of the chlorine atom also increases the association between unlike molecules by the OH · · · Cl hydrogen bond. Comparing the benzene mixtures involved, the two effects together may be responsible for the lower $H^{\rm E}$ values of the corresponding chlorobenzene mixtures. The positive values of $H^{\rm E}$ for alcohols + chlorobenzene, however, suggest that the energy released in the formation of hydrogen bonds is less than that required to break associations present in the pure liquids.

The excess molar enthalpy curves of methanol, ethanol + aniline are sigmoid-shaped, in which the positive values are restricted to lower alcohol mole fractions. The H^{E} values of methanol + aniline are more negative in magnitude and wider in alcohol mole fraction range than those of ethanol + aniline. For the other aniline mixtures, the H^{E} values are all positive over the entire composition range. The maximum values are gradually shifted in the alcohol-rich direction and the mixing curves become symmetrical with increasing number of $-CH_{2}$ - groups in the alcohols. Considering the

		100 million 100					
	${oldsymbol{A}_0}$	A_1	A_2	A_3	A_4	A_5	S
$xCH_3OH + (1 - x)C_6H_5NH_2$ $xCH_3OH + (1 - x)C_6H_5CI$	- 703.1 6 760.4	1 037.2 - 366.9	188.9 - 33 446.6	642.6 50251.0	- 884.9 - 22588.3		1.4 2.5
$xC_2H_5OH + (1 - x)C_6H_5NH_2$ $xC_2H_5OH + (1 - x)C_6H_5C1$	1401.9 17110.4	1184.5 -49701.5	198.1 60579.8	1 149.9 27 827.7	- 715.2	1 541.2	1.4 1.9
$xC_{3}H_{7}OH + (1 - x)C_{6}H_{5}NH_{2}$ $xC_{3}H_{7}OH + (1 - x)C_{6}H_{5}CI$	3 098.7 28 866.9	617.2 - 123140.7	139.7 239053.1	278.6 - 215 861.9	72 539.6		2.4 2.1
$xC_{5}H_{11}OH + (1 - x)C_{6}H_{5}NH_{2}$ $xC_{5}H_{11}OH + (1 - x)C_{6}H_{5}CI$	4052.2 23867.0	719.2 - 85 610.4	653.8 146631.7	1 273.9 	244.9 36 378.7		2.8 1.6
$xC_{6}H_{13}OH + (1 - x)C_{6}H_{5}CI$	28 692.5	- 120923.3	236129.6	-214737.4	72959.0		1.5

Coefficients A_i for eqns. (1) and (2) and the standard deviations, s

TABLE 3

Fig. 1. Excess molar enthalpies of *n*-alcohols with aniline at 298.15 K. The curves were calculated from eqn. (1) with the coefficients from Table 3. \circ , Experimental data: 1, methanol; 2, ethanol; 3, *n*-propanol; 4, *n*-butanol; 5, *n*-pentanol:

structures and chemical properties of alcohols and aniline, there may be five kinds of hydrogen bond in the mixtures.

According to this assumption, the sign and magnitude of H^{E} depend on the strength of the hydrogen bonds in pure alcohol and pure aniline and in their

Fig. 2. Excess molar enthalpies of *n*-alcohols with chlorobenzene at 298.15 K. The curves were calculated from eqn. (2) with the coefficients from Table 3. \circ , Experimental data: 1, methanol; 2, ethanol; 3, *n*-propanol; 4, *n*-butanol; 5, *n*-pentanol; 6, *n*-hexanol.

mixtures. The negative values of H^{E} suggested that the dominant effect in the mixing process is the strong exothermic association of hydrogen bonds between unlike molecules (bonds I, II, III).

Fig. 3. Excess molar enthalpies of *n*-alcohols with aniline or chlorobenzene at x = 0.5 (298.15 K). •, Chlorobenzene, \circ , aniline; n = the number of carbon atoms in the alcohol.

It has been observed that the excess molar enthalpies of *n*-alcohols with cyclohexane [12], where there are no specific interactions between unlike molecules, are generally independent of the alcohol chain length. The same phenomenon also appears in the mixtures of an *n*-alcohol + an *n*-alkane. This indicates that various molecular interactions caused by increasing the number of $-CH_{2^-}$ groups in the alcohol are essentially balanced in the mixing process. Hence, we consider that the alcohol chain length mainly influences the specific interactions between unlike molecules. This effect becomes more significant in mixtures containing a smaller alcohol. From Fig. 3, we can see that the difference between the H^E values for methanol + aniline and ethanol + aniline is 526 Jmol^{-1} at x = 0.5, while that between *n*-butanol + aniline and *n*-pentanol + aniline is only 65 J mol⁻¹. Compared with aniline mixtures, the differences between the corresponding chlorobenzene mixtures are very much smaller. This indicates that specific interactions between alcohols and chlorobenzene are generally rather weaker.

REFERENCES

- 1 J.P. Chao and M. Dai, Acta Phys. Chem. Sin., 2 (1986) 45.
- 2 M. Dai and J.P. Chao, Fluid Phase Equilibria, 23 (1985) 321
- 3 J.P. Chao and M. Dai, Thermochim. Acta, 123 (1988) 285.
- 4 J.P. Chao and M. Dai, J. Chem. Thermodyn., 21 (1989) 337.
- 5 J.P. Chao and M. Dai, J. Chem. Thermodyn., 21 (1989) 977.
- 6 J.P. Chao and M. Dai, J. Henan Acad. Sci., 3 (1984) 7.
- 7 J.P.E. Grolier, Thermochim. Acta, 16 (1976) 27.
- 8 J.A. Riddick and W.B. Bunger, Organic Solvents, Techniques of Chemistry, Vol. II, 3rd edn. Wiley, New York, 1970.
- 9 D.D. Deshpande and M.V. Pandya, Trans. Faraday Soc., 63 (1967) 2346.
- 10 G.L. Nicolaides and C.A. Eckert, J. Chem. Eng. Data, 23 (1978) 152.
- 11 I. Nagata and K. Tamura, J. Chem. Thermodyn., 20 (1988) 87.
- 12 J.P. Chao, Thesis, Henan Institute of Chemistry, 1986.